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Abstract 
LBNL is pursuing design studies and the scientific program for a facility dedicated to the production of x-
ray pulses with ultra-short time duration, for application in dynamical studies of processes in physics, 
biology, and chemistry. The proposed x-ray facility has the short x-ray pulse length (~60 fs FWHM) 
necessary to study very fast dynamics, high flux (up to approximately 1011 photons/sec/0.1%BW) to study 
weakly scattering systems, and tuneability over 1-12 keV photon energy. The hard x-ray photon production 
section of the machine accomodates seven 2-m long undulators. Design studies for longer wavelength 
sources, using high-gain harmonic generation, are in progress. The x-ray pulse repetition rate of 10 kHz is 
matched to studies of dynamical processes (initiated by ultra-short laser pulses) that typically have a long 
recovery time or are not generally cyclic or reversible and need time to allow relaxation, replacement, or 
flow of the sample. The technique for producing ultra-short x-ray pulses uses relatively long electron 
bunches to minimise high-peak-current collective effects, and the ultimate x-ray duration is achieved by a 
combination of bunch manipulation and optical compression. Synchronization of x-ray pulses to sample 
excitation signals is expected to be of order 50 - 100 fs. Techniques for making use of the recirculating 
geometry to provide beam-based signals from early passes through the machine are being studied. 
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